User Manual M1

Direct current / Direct voltage signals $\mathbf{0 - 2 0} \mathrm{mA}, \mathbf{4 - 2 0} \mathrm{mA}, \mathbf{0 - 1 0}$ VDC

Installation size $96 \times 48 \mathrm{~mm}(\mathrm{BxH})$

Installation size $48 \times 24 \mathrm{~mm}(\mathrm{BxH})$

Installation size mm (BxH)

Installation size $72 \times 36 \mathrm{~mm}$ (BxH)

Technical features:

- red display of -1999... 9999 digits (optional: green, orange or blue)
- minimal installation depth: $25 \mathrm{~mm}, 27 \mathrm{~mm}, 60 \mathrm{~mm}$ or 71 mm without plug-in terminal
- adjustment via factory default or directly on the sensor signal
- min/max-memory
- 10 adjustable supporting points
- display flashing at threshold exceedance / undershooting
- tara function
- programming interlock via access code
- protection class IP65 at the front
- plug-in terminal
- pc-based configuration software PM-TOOL with CD and USB-adapter
- on request: devices for operating temperature of $-40^{\circ} \ldots+70^{\circ} \mathrm{C}(\mathrm{M} 1 \mathrm{O})$

Identification - Direct voltage / Direct current

STANDARD TYPES	ORDER NUMBER
Housing dimension:	M1-1VR4B.0001.570xD
96x48x38 mm (incl. plug-in terminal)	M1-1VR4B.0001.770xD
Housing dimension:	M1-3VR4B.0001.570xD
96x24×74 mm (incl. plug-in terminal)	M1-3VR4B.0001.770xD
Housing dimension:	M1-6VR4B.0001.570xD
72x36x100 mm (incl. plug-in terminal)	M1-6VR4B.0001.770xD
Housing dimension:	M1-7VR4A.0001.770xD
$48 \times 24 \times 54$ mm (incl. plug-in terminal)	

Options - breakdown of order code:

Please state physical unit by order, e.g. m/min.

Content

1. Brief description 1
2. Assembly 1
3. Electrical connection and connection examples 2
4. Function description and operation 4
4.1. Programming software PM-TOOL 4
5. Setting up the device 5
5.1. Switching on 5
5.2. Standard parameterisation (flat operation level) 5Value assignment for control of the signal input
5.3. Programming interlock RUM 6Activation/Deactivation of the programming interlock or change into extendedparameterisation
5.4. Extended parameterisation 7
Superior device functions like e.g.:

- rescaling of the input signals, EMDR, OFFR 7
- parameterisation of a TARA-function, TRRR 7
- zero point slowdown of the input signal, ZERO 7
- allocation of functions onto the navigation keys, TRST 8
- adjustment of limit values for optical alarm, Li-1/2 8
- safety parameter for locking of the programming, CODE 10
- input of supporting points for the linearisation of the input signals, SPCT 10

6. Reset to default values 11Reset of the parameter onto delivery condition
7. Alarms / Switching points 12Functional principle of the optical switching points
8. Technical data 13
9. Safety advices 15
10. Error elimination 16

1. Brief description

The panel instrument M1-x1 is a 4-digit device for direct voltage and direct current signals and a visual limit value monitoring via the display. The configuration happens via three front keys or via the optional PC-software PM-TOOL. An integrated programming lock prevents unrequested changes of the parameter and can be unlocked again via an individual code. The electrical connection happens on the rear side via plug-in terminals.
Selectable functions like e.g. the recall of the min/max-value, a zero point slowdown, a direct change of the limit value in operating mode and additional measuring supporting points for a linearisation of the input signal, complete the modern device concept.

2. Assembly

Please read the Safety advices on page 16 before installation and keep this user manual for future reference.
The example given below shows a device in housing size $96 \times 48 \mathrm{~mm}$.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

3. Electrical connection

Type M1-1VR4B.0001.570xD (96x48 mm) Type M1-3VR4B.0001.570xD (96x24 mm)

Type M1-1VR4B.0001.770xD (96x48 mm)
Type M1-3VR4B.0001.770xD (96x24 mm)
Type M1-7VR4A.0001.770xD (48x24 mm)

Type M1-6VR4B.0001.570CD / M1-6VR4B.0001.770xD (Housing 72x36 mm)

Option:

Connection examples:

Below you find some connection examples, which demonstrate some practical applications:

M1-1/3/7 in combination with a 2-wire-sensor 4-20 mA

M1-6

M1-1/3/7 in combination with a 3-wire-sensor 0/4-20 mA

M1-6

M1-1/3/7 in combination with a 3-wire-sensor 0-10 V

M1-6

M1-1/3 in combination with a 2-wire-sensor 4-20 mA

M1-6

M1-1/3 in combination with a 3-wire-sensor 0/4-20 mA

M1-6

M1-1/3 in combination with a 3-wire-sensor 0-10 V

M1-6

4. Function description and operation

Operation

The operation is divided into two different levels.

Menu Level

Here it is possible to navigate between the individual menu items.

Parameterization level:

The parameters stored in the menu item can be parameterized here.
Functions that can be adjusted or changed are always indicated with a flashing of the display. Adjustments made at the parameterization level should be always confirmed by pressing the [P] key to save them. However, the display automatically saves all adjustments and then switches to operation mode if no further keys are pressed within 10 seconds.

Level	Button	Description	
Menu level	P	Change to parameterization level with the relevant parameters	
	∇	$\boldsymbol{\Delta}$	For navigation at the menu level
	P	To confirm the changes made at the parameterization level	
	$\boldsymbol{\nabla}$	To change the value or setting	

4.1. Programming via configuration software PM-TOOL-MUSB4:

You receive the software on CD incl. an USB-cable with a device adapter. The connection is done via a 4-pole micromatch connector plug on the back and the PC is connected via an USB connector plug.

System requirements: PC with USB interface

Software: Windows XP, Windows Vista

With this tool the device configuration can be created, skipped and saved on the PC. Via the easy to handle program surface the parameter can be changed, whereat the mode of operation and the possible selection options can be preset via the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching on

Once the installation is complete, you can start the device by applying the current loop. Check beforehand once again that all the electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (88888) is displayed, followed by an indication of the software type and, after that, also for 1 second, the software version. After the start-up sequence, the device switches to operation/display mode.

5.2. Standard parameterization:

To be able to parameterize the display, press the [P] key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

Menu level Parameterization level

Selection of the input signal, TYPE:
Default: SENS

Setting the measuring range end value, EMD:
Default: 1000

Set the end value from the smallest to the highest digit with [\mathbf{A}] [$\mathbf{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level. If SEMS was selected as the input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.
Setting the measuring range start/offset value, OFF5:
Default: 0000

Enter the start/offset value from the smallest to the highest digit [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If SEMS was selected as the input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.

Menu level Parameterization level

Setting the decimal point, DOT:
Default: 0

The decimal point on the display can be moved with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] and confirmed with $[P]$. The display then switches back to the menu level again.

Setting the display time, SEC:
Default: 01.0

The display time is set with [\mathbf{A}] [\mathbf{V}]. The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 to 10.0 seconds. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.
5.3. Programming interlock RUM

Activation/deactivation of the programming lock and completion of the standard parameterization, RUN:
Default: ULOC

Choose between the deactivated key lock ULOC (works setting) and the activated key lock LOC with the aid of the [\mathbf{A}] [$\mathbf{\nabla}$] keys. Make the selection with [P]. After this, the display confirms the settings with "----", and automatically switches to operating mode. If $L O C$ was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the CODE (works setting 1234) that appears using the [$\mathbf{4}$] [\mathbf{V}] keys plus [P] to unlock the keyboard. FRIL appears if the input is wrong.

5.4. Extended parameterization

By pressing the [\mathbf{A}] \& [$\mathbf{\nabla}$] keys during standard parameterization for one second, the display switches to the extended parameterization mode. Operation is the same as in standard parameterization.

Setting the tare/offset value, TRRR:
Default: 0

The given value is added to the linerarized value. In this way, the characteristic line can be shifted by the selected amount.
Zero point slowdown, ZERD:
Default: 0

With zero point slowdown, a value range around zero can be preselected at which the display shows zero. If, for example, a 10 is set, the display would show a zero in the range from -10 to +10 and continue below it with -11 and above it with +11 .

Function if display falls below / exceeds limit value, FU -ट:
Default: HISH

To indicate if the value falls below the lower limit value, LOUU can be selected (LOW = lower limit value) and if it goes above the upper limit value, $\boldsymbol{H} I G H$ can be selected (HIGH = upper limit value). LOW corresponds to the quiescent current principle and HIGH to the operating current principle.
Setting the code, conc:
Default: l234

6. Reset to default values

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press [P]-button
- Switch on voltage supply and press [P]-button until ..- --" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the unit back into the state in which it was supplied.

Caution! All application-related data are lost.

7. Functional principle of the switching points

Limit value exceedance " $H G H$ "
The switching point S1-S2 is "off" below the threshold and "on" on reaching the threshold.

Limit value undercut "LOW"

The switching point S1-S2 is "on" below the threshold and switched "off" on reaching the threshold.

Alarms / optical switching point display

An activated switching point can be optically indicated by flashing of the 7-segment display.

Functional principle of the alarms

Alarm	Deactivated, display value
Threshold	Threshold value / limit value for switch over
Hysteresis	Width of the window between the thresholds
Operating principle	Limit value exceedance / limit value undercut

8. Technical data

Housing				
Dimensions	$96 \times 48 \times 25 \mathrm{~mm}(\mathrm{BxHxD}), \mathrm{D}=38 \mathrm{~mm}$ including plug-in terminal			
	$96 \times 24 \times 60 \mathrm{~mm}(\mathrm{BxH} \times \mathrm{D}), \mathrm{D}=74 \mathrm{~mm}$ including plug-in terminal			
	$72 \times 36 \times 71 \mathrm{~mm}(\mathrm{BxHxD}), \mathrm{D}=100 \mathrm{~mm}$ including plug-in terminal			
	$48 \times 24 \times 27 \mathrm{~mm}(\mathrm{BxHxD}), \mathrm{D}=54 \mathrm{~mm}$ including plug-in terminal			
Panel cut-out	$92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$ (Housing 96x48 mm)			
	$92.0^{+0.8} \times 22.2^{+0.3} \mathrm{~mm}$ (Housing 96x24 mm)			
	$68.0^{+0.7} \times 32.0^{+0.7} \mathrm{~mm}$ (Housing $72 \times 36 \mathrm{~mm}$)			
	$45.0^{+0.6} \times 22.2^{+0.3} \mathrm{~mm}$ (Housing $48 \times 24 \mathrm{~mm}$)			
Insulation thickness	up to 3 mm			
Fixing	snap-in screw element			
Material	PC Polycarbonate, black, UL94V-0			
Sealing material	EPDM, 65 Shore, black			
Protection class	standard IP65 (front), IP00 (back side)			
Weight	approx. $100 \mathrm{~g}(96 \times 48 \mathrm{~mm}, 96 \times 24 \mathrm{~mm}, 48 \times 24 \mathrm{~mm})$ approx. $200 \mathrm{~g}(72 \times 36 \mathrm{~mm})$			
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$			
Display				
Digit height	10 mm (housing $48 \times 24 \mathrm{~mm}$) 14 mm (housing $96 \times 48 \mathrm{~mm}, 96 \times 24 \mathrm{~mm}, 72 \times 36 \mathrm{~mm}$)			
Segment colour	red (optional green, orange or blue)			
Display range	-1999 to 9999			
Setpoints	optical display flashing			
Overflow	horizontal bars at the top			
Underflow	horizontal bars at the bottom			
Display time	0.1 to 10.0 seconds			
Input	Measuring range	Ri	Measuring fault	Digit
min. -22...max. 24 mA	0/4-20 mA	$\sim 100 \Omega$	0.1% of measuring range	± 1
min. -12...max. 12 VDC	0-10 VDC	$\sim 200 \mathrm{k} \Omega$	0.1 \% of measuring range	± 1

Switching outputs	Type	Switching contact
Only in housing size $72 \times 36 \mathrm{~mm}$	2 relays with change-over contact	contact voltage 30 VDC/AC, max. 2 A resistive load operating life $<30 \mathrm{mV} /<10 \mathrm{~mA}$ - minimum $2.5 \times 10^{\wedge} 6$ 30 VDC / 1 A - minimum $5 \times 10^{\wedge} 5$ $30 \mathrm{VDC} / 2 \mathrm{~A}$ - minimum $1 \times 10^{\wedge} 5$
Accuracy		
Temperature drift		100 ppm / K
Measuring time		0.1... 10.0 seconds
Measuring principle		U/F-conversion
Resolution		approx. 18 bit at 1s measuring time
Power pack		230 VAC ± 10 \% max. 3 VA 24 VDC ± 10 \% max. 1 VA
Memory		EEPROM
Data life		≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions		
Working temperature		$0^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$
Storing temperature		$-20^{\circ} \mathrm{C} \ldots 80^{\circ} \mathrm{C}$
Weathering resistance		relative humidity $0-80 \%$ on years average without dew
EMV		EN 61326
CE-sign		Conformity to directive 2014/30/EU
Safety standard		cording to low voltage directive 2014/35/EU 61010; EN 60664-1

9. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The M1-x1-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or cause damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The M1-x1-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or freewheeling diodes.
- Keep input, output and supply lines separate from each other and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, the best measuring results can be received.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

10. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow. \square	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit . - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
3.	The word HELP lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset to the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	ERRI lights up in the 7-segment display.	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure if the device has been parameterised before, then follow the steps as written in chapter 6 and set it back to its delivery status.

